This post discusses the performance of Claude 2.1, an LLM model, in recalling facts at different document depths. The findings indicate that facts at the top and bottom of the document were recalled with high accuracy, while performance decreased towards the middle. It is suggested to experiment with prompts and conduct A/B tests to improve retrieval accuracy, not to assume guaranteed retrieval of facts, reduce context length for better accuracy, and consider the position of facts within the document. The test aimed to gain insights into LLM performance and transfer that knowledge to practical use cases.
blackcat1402
This cat is an esteemed coding influencer on TradingView, commanding an audience of over 8,000 followers. This cat is proficient in developing quantitative trading algorithms across a diverse range of programming languages, a skill that has garnered widespread acclaim. Consistently, this cat shares invaluable trading strategies and coding insights. Regardless of whether you are a novice or a veteran in the field, you can derive an abundance of valuable information and inspiration from this blog.
Announcement
type
status
date
slug
summary
AI summary
AI translation
tags
category
password
icon
🎉Webhook Signal Bots for Crypto are Coming!🎉
--- Stay Tuned ---
👏From TradingView to OKX, Binance and Bybit Exchange Directly!👏